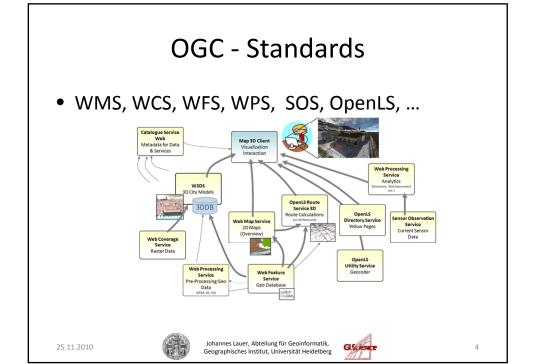

Logistiksysteme optimieren -

freie
Geo-Informationssysteme zur
Unterstützung
der Transporttätigkeit



Open Geospatial Consortium (OGC)

- Gegründet 1994
- Gemeinnützige Organisation zur Entwicklung allgemeingültiger Standards für raumbezogene Daten zum Zweck der Interoperabilität
- 400 Mitglieder (darunter Google, Microsoft, Nasa, Oracle, Universitäten, Behörden, ...)
- http://www.opengeospatial.org

25.11.2010

OGC – OpenGIS Location Service Spezifikation Core Services: Part: 3 Location Utility Service Part: 4 Presentation Service Part: 5 Route Service Reverse Geocode Service Part: 4 Presentation Service Part: 4 Presentation Service - Verzeichnisdienst - (Reverse-) Geocoder - Routenplanung

Geodaten

Johannes Lauer, Abteilung für Geoinformatik, Geographisches Institut, Universität Heidelberg

Amtliche

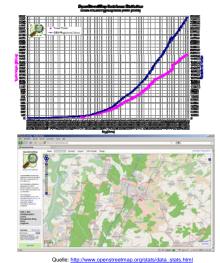
25.11.2010

- National: Landesvermessungsämter, BKG, ...
- Proprietäre
 - Teleatlas, Navteq, Google, kleinere Firmen, ...
- Freie
 - OpenStreetMap, TIGER (USA), ...

Freie Geodaten?

- Kostenlos, aber zweckgebunden (z.B. InVeKoS Daten)
- Frei zugänglich, aber nicht frei verwendbar (z.B. WMS mit Luftbildern eines Landesvermessungsamtes)
- Frei nutzbar und editierbar (z.B. OpenStreetMap)

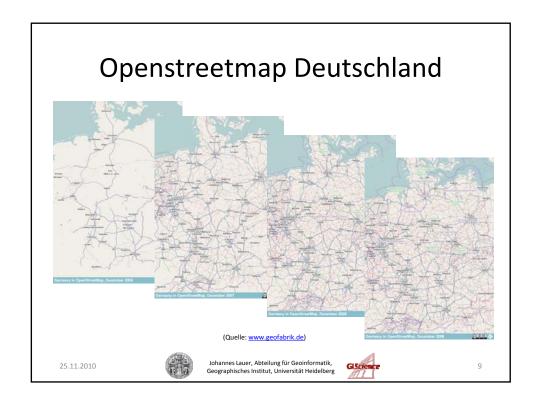
25.11.2010



GISCHERICE

7

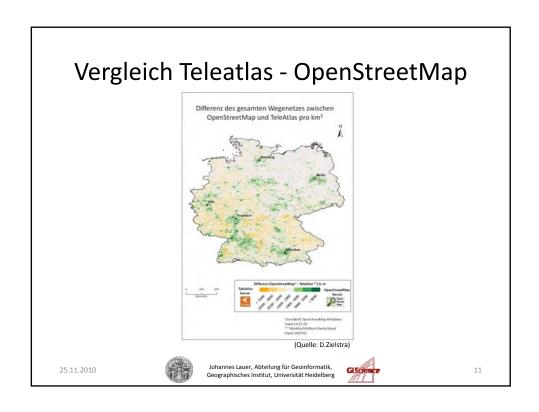
Freie Geodaten - OpenStreetMap

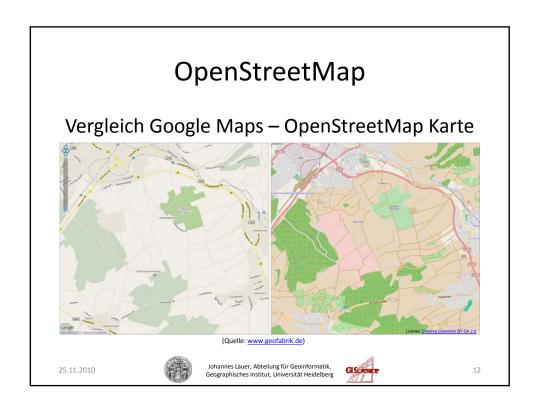

- Geschichte OpenStreetMap Projekt
 - Gründung: 9. August 2004
 - 31.08.2006: 3.000 registrierte Benutzer
 - 07.08.2007: 10.000 registrierte Benutzer
 - 25.12.2007: 20.000 registrierte Benutzer
 - 08.01.2008: 20 Mio ways (~200 Mio nodes)
 - 17.03.2009: 100.000 registrierte Benutzer
 - 05.01.2010: 200.000 registrierte Benutzer
 - 24.11.2010: 327.408 registrierte Benutzer

25.11.2010

GISCHERE

Datenerfassung Wie kommen die Daten zu OSM?


Manuell



- GPS-Gerät
- digitalisieren von lizenzfreien Luftbildern
- (Teil-) automatisiert
 - Generierung von Straßendaten aus Telematikdaten
 - Nutzen von vorhandenem Wissen
 - Maschinendaten
 - Sensordaten
 - Bestehende Geodaten



Die Daten ermöglichen ...

- Routing über Feldwege
- Fahrzeugspezifisches Routing
- Ergänzung bei Lücken, Berichtigung von Fehlern (sowohl von Geometrien, als auch von Attributen)

25.11.2010

Anwendungen in der landwirtschaftlichen Logistik

- Routenplanung für LU und landwirtschaftliche Betriebe (Welche Flächen sollen bearbeitet werden, wie kann der LU sie erreichen?)
- Optimierung von Logistikketten (z.B. Biogas Logistik, Getreideernte, ...)
- Auf der Datengrundlage lassen sich bekannte Algorithmen zur Routenplanung, sowie zur Optimierung von Logistikketten (Rundreiseproblem, etc.) anwenden

25.11.2010

19

Vor-/Nachteile der OpenStreetMap Daten

Nachteile

Lagegenauigkeit, Attribute, Vollständigkeit, topologische Korrektheit, Vandalismus, Aufwand für Datenaufbereitung (je nach Anwendung)

Vorteile

Aktualität, Vielfalt, frei und kostenlos, Vollständigkeit in ausgewählten Bereichen, große Nutzergruppe, einfaches Datenformat (leicht verständlich)

Forschungsfragen

- · Qualitätsvergleiche mit anderen Daten
- Aufbau standardisierter Geo-Web-Services im landwirtschaftlichen Kontext
 - Optimale Routenplanung
 - Empfehlungen für Umladepunkte
 - Suche von Servicestellen (Landmaschinenhändler, ...)
- Nutzen der Daten für Endanwenderdienste (z.B. landw. Logistik)
- Qualitätssicherung bei VGI (Volunteered Geographic Information)
- Verkettung / Zusammenspiel von Diensten

25.11.2010

GIScience

21

Resumé

- Freie Daten bieten ein großes Potential für den Einsatz in Spezialgebieten z.B. landwirtschaftliche Logistik
- OGC Standards liefern die nötigen Vorgaben für Interoperabilität
- Nutzergenerierte Daten ermöglichen eine zeitnahe Reaktion auf Änderungen (bspw. Flächenarrondierung, Flächenteilung, Wegzustände, ...)
- Die Vielfalt der Nutzergruppen schafft einen bereichsübergreifenden Datenmehrwert (z.B. Forst, Rettungskräfte, Tourismus, Wegeinstandhaltung, ...)

Vielen Dank für Ihre Aufmerksamkeit!

Johannes Lauer Abteilung für Geoinformatik Universität Heidelberg <u>johannes.lauer@geog.uni-heidelberg.de</u> www.giscience.uni-hd.de

25.11.2010

Johannes Lauer, Abteilung für Geoinformatik, Geographisches Institut, Universität Heidelberg

23

FOSSGIS 2011 - Konferenz

- Freie und Open Source Software für Geoinformationssysteme
- 5.-7. April 2011 in Heidelberg
- http://www.fossgis.de/konferenz

F&SSGIS.

25.11.2010

